é•·è°·å·ç ”究室ã§ã¯ã€èµ°æŸ»ãƒˆãƒ³ãƒãƒ«é¡•å¾®é¡ï¼ˆï¼³ï¼´ï¼ï¼‰ã‚’使ã£ã¦ã€è¡¨é¢ä¸Šã§ã®ãƒŠãƒŽã‚¹ã‚±ãƒ¼ãƒ«ã§ã®è§£æ˜Žã‚’進ã‚ã¦ã„ã¾ã™ã€‚
STï¼ã¯ã€æŽ¢é‡ï¼ˆãƒ—ãƒãƒ¼ãƒ–)ã¨å‘¼ã°ã‚Œã‚‹é‡ã‚’観察ã—ãŸã„試料表é¢ã«è¿‘ã¥ã‘ã€è¡¨é¢ã‚’ãªãžã‚‹ã“ã¨ã«ã‚ˆã£ã¦è¡¨é¢ã®å‡¹å‡¸ã‚’見る顕微é¡ã§ã™ã€‚é‡ã¨è©¦æ–™ã¨ã®é–“ã«æµã‚Œã‚‹ãƒˆãƒ³ãƒãƒ«é›»æµã‚’利用ã™ã‚‹ã“ã¨ã«ã‚ˆã£ã¦ã€é‡ã‚’原å数個分ã»ã©é›¢ã‚ŒãŸä½ç½®ã«ä¿æŒã—ãªãŒã‚‰ãªãžã‚‹ã“ã¨ãŒã§ãã‚‹ã®ã§ã€è¡¨é¢ä¸Šã®åŽŸåスケールã®å‡¹å‡¸ã€ã™ãªã‚ã¡åŽŸååƒã‚’撮るã“ã¨ãŒã§ãã¾ã™ã€‚走査トンãƒãƒ«åˆ†å…‰ï¼ˆï¼³ï¼´ï¼³)ã¨å‘¼ã°ã‚Œã‚‹æ‰‹æ³•ã‚’併用ã™ã‚Œã°ã€é‡ç›´ä¸‹ã®è©¦æ–™è¡¨é¢ã§ã®é›»å状態ã«é–¢ã™ã‚‹æƒ…å ±ã‚‚å¾—ã‚‹ã“ã¨ã‚‚ã§ãã¾ã™ã€‚
é•·è°·å·ç ”究室ã§ã¯ç‰¹ã«ã€ä½Žæ¸©ãƒ»ç£å ´ä¸ãƒ»RF環境下ãªã©ã®ç‰¹æ®Šç’°å¢ƒä¸‹ã§ã® 精度ã®é«˜ã„測定ã«ã“ã ã‚ã£ã¦ãŠã‚Šã€ ä»–ã®æ‰‹æ³•ã§ã¯å¾—られãªã„ç¾è±¡ã®è¦³æ¸¬ã‚’目指ã—ã¦ã„ã¾ã™ã€‚
ã“ã“ã«æ›¸ã‹ã‚Œã¦ã„ã‚‹ç ”ç©¶å†…å®¹ã®ä»–ã«ã‚‚ã€æ§˜ã€…ãªå…±åŒç ”究や装置開発ãªã©ã‚‚è¡Œã£ã¦ã„ã¾ã™ã€‚
We are working on studies of surface science in nanometer scale using scanning tunneling microscopy (STM).
STM detects a topography by scanning a very sharp tip closely above a sample surface. Tip-sample distance can be stabilized by detecting tunneling current which changes dramatically depending on the tip-sample distance. By scanning tunneling spectroscopy (STS), we can get information about electronic states in atomic scales.
Especially, we focus on precise measurements in extreme conditions, such as low temperature, high magnetic field, RF electromagnetic field.
Besides the above subjects, we are working on various joint researches and system developments.
1. 表é¢äºŒæ¬¡å…ƒé›»åç³»ã®ç‰©æ€§è¦³æ¸¬ (Electronic states of two dimensional systems)
表é¢æ•°åŽŸå層ã«å±€åœ¨ã—ãŸé›»å状態をæŒã¤è¡¨é¢ç³»ã‚’利用ã—ã¦äºŒæ¬¡å…ƒé›»åç³»ã«é–¢ã™ã‚‹ã•ã¾ã–ã¾ãªç¾è±¡ã®å®Ÿç©ºé–“観察を目指ã—ã¦ã„ã¾ã™ã€‚
対象ã¯ã€å¸ç€åŽŸåãªã©è¡¨é¢æ§‹é€ ã¨ã®ç›¸äº’作用ã€é–‰ã˜è¾¼ã‚効果ã€é›»å定在波・フリーデル振動・é®è”½åŠ¹æžœã€ãƒ•ã‚©ãƒŽãƒ³ã¨ã®ç›¸äº’作用ã«ã‚ˆã‚‹ãƒ•ã‚§ãƒ«ãƒŸé¢è¿‘å‚ã®é›»å状態ã€è¿‘藤効果ãªã©ãªã©ã€ä½Žæ¸©ï¼ˆæ¶²ä½“ヘリウム)超高真空走査トンãƒãƒ«é¡•å¾®é¡ï¼ˆï¼³ï¼´ï¼ï¼‰ã‚’用ã„ãŸãƒˆãƒ³ãƒãƒ«åˆ†å…‰ã«ã‚ˆã‚‹é«˜ç²¾åº¦ã§ã®é›»å状態測定技術ãŒéµã¨ãªã‚Šã¾ã™ã€‚
We are working on real space measurements of electronic systems confined in a few atomic layers.
Our interests are various phenomena of surface, such as interactions between substrates and adatoms, standing waves, Friedel oscillations, shielding effects, electron-phonon interactions, and Kondo effects.
Ultrahigh vacuum and low temperature conditions are the key role to reveal high resolution STM measurements.
References:
M. Ono et al.,Appl. Surf. Sci. 256, 469-474 (2009)
M. Ono et al.,Phys. Rev. Lett. 96, 016801 (2006)
2. ナノサイズ超ä¼å°Žä½“ (Nano-sized superconducting materials)
シリコン基æ¿ä¸Šã«è¶…ä¼å°Žä½“ã§ã‚る鉛を蒸ç€ã™ã‚‹ã“ã¨ã«ã‚ˆã£ã¦ã€ã‚¢ã‚¤ãƒ©ãƒ³ãƒ‰æ§‹é€ ã‚„å˜å±¤è¶…ä¼å°Žè–„膜を作製ã—ã€ãã®è¶…ä¼å°Žç‰¹æ€§ã‚’トンãƒãƒ«åˆ†å…‰æ¸¬å®šã«ã‚ˆã‚Šè©•ä¾¡ã—ã¦ã„ã¾ã™ã€‚サイズ・形状ä¾å˜æ€§ã‚„ç£å ´ä¸ã§ã®ç£æŸã®ä¾µå…¥ç‰¹æ€§ã€ãã—ã¦å¸¸ä¼å°Žä½“ã¸ã®è¶…ä¼å°Žç‰¹æ€§ã®ã—ã¿å‡ºã—ã«èˆˆå‘³ã‚’æŒã£ã¦ç ”究を行ã£ã¦ã„ã¾ã™ã€‚世界ã§ã‚‚稀少ãªãƒ˜ãƒªã‚¦ãƒ 3冷å´ï¼ˆåˆ°é”温度ï¼ï¼Žï¼”K以下)ã®è¶…高真空STï¼ã«ã‚ˆã‚Šæ¸¬å®šã—ã¦ãŠã‚Šã€ï½ï½…V以下ã®ç²¾åº¦ã§ã®è¨ˆæ¸¬ãŒå¯èƒ½ã§ã™ã€‚
We are interested in superconducting properties of nano sized island and films of superconductors (e.g., Pb). Superconducting properties, such as formation of vortices, proximity effect, and critical field) depending on size and shape are studied by low temperature (~0.4K) and ultrahigh vacuum STM.
References:
H. Kim et al.,Phys. Rev. Lett. 117, 116802 (2016)
H. Kim and Y. Hasegawa Phys. Rev. Lett. 114, 206801 (2015).
ãªã©
3. 表é¢å¸ç€åˆ†åã®ç£æ€§ã¨ã‚¹ãƒ”ンå極STM (Magnetic molecules studied by spin-polarized STM)
ç£æ€§æŽ¢é‡ã‚’用ã„ã¦ç£æ€§è¡¨é¢ã‚’測定ã™ã‚‹ã¨ã€ãƒˆãƒ³ãƒãƒ«ç£æ°—抵抗効果ã«ã‚ˆã£ã¦æŽ¢é‡ã¨ã‚µãƒ³ãƒ—ルã®ç£åŒ–ã®å‘ãã«ä¾å˜ã—ã¦ãƒˆãƒ³ãƒãƒ«é›»æµãŒå¤‰åŒ–ã™ã‚‹ãŸã‚ã«ã€è¡¨é¢ã«ãŠã‘ã‚‹ç£æ°—æ§‹é€ ã‚’åŽŸåスケールã§è©³ç´°ã«èª¿ã¹ã‚‹ã“ã¨ã‚‚å¯èƒ½ã¨ãªã‚Šã¾ã™ã€‚ã¾ãŸã€è¡¨é¢ãƒŠãƒŽç£æ€§ä½“ã«å¯¾ã—ã¦æ§˜ã€…ãªç£å ´ã§æ¸¬å®šã‚’è¡Œã†ã“ã¨ã§ã€ãã®ç£æ€§ä½“ã®ç£åŒ–曲線をæãã“ã¨ã‚‚å¯èƒ½ã§ã™ã€‚ç¾åœ¨ã¯ã€ãã®å¯¾è±¡ã¨ã—ã¦ç£æ€§åˆ†åã«èˆˆå‘³ã‚’æŒã£ã¦ç ”究を行ã£ã¦ã„ã¾ã™ã€‚最終的ã«ã¯ã€ã‚¹ãƒ”ンå極STMã¨åˆ†åマニピュレーションを組ã¿åˆã‚ã›ã¦ã€ä½Žæ¬¡å…ƒé‡åスピン系を表é¢ä¸Šã§æ§‹æˆã—ã€ãã®é‡åç£æ€§ã‚’調ã¹ã‚‹ã“ã¨ã‚’目指ã—ã¦ã„ã¾ã™ã€‚
When a magnetic tip is used for scanning, sample magnetic structures in nanoscale can be investigated by detecting tunneling magnetoresistance between a tip and a sample. In addition, magnetization curve can be measured in magnetic fields. We are interested in magnetic molecules, taking into consideration to build up a low dimensional system by the atomic/molecule manipulation technique.
ç ”ç©¶æˆæžœï¼š
S. Yamamoto et al.,Phys. Rev. B 93, 081408(R) (2016)
ãªã©
4. スピンå極STMã«ã‚ˆã‚‹é‡å…ƒç´ 基æ¿ä¸Šã®3dç£æ€§é‡‘属薄膜ã®ç ”究 (Chiral magnetism studied by spin-polarized STM)
é‡ã„基æ¿ä¸Šã®ç£æ€§è–„膜 (タングステン表é¢ä¸Šã®3dç£æ€§é‡‘属薄膜ãªã©) ã¯ã€ã‚¸ãƒ£ãƒã‚·ãƒ³ã‚¹ã‚ー守谷相互作用ã«ã‚ˆã£ã¦è¤‡é›‘ãªç£æ°—æ§‹é€ ãŒç¾ã‚Œã¾ã™ã€‚我々ã¯ã‚¹ãƒ”ンå極STMã«ã‚ˆã£ã¦ãã®ç£æ°—æ§‹é€ ã‚„åŠ±èµ·çŠ¶æ…‹ã®ç ”究ã«å–り組んã§ã„ã¾ã™ã€‚
Complex magnetic structures appear due to the Dzyaloshinskii-Moriya interaction on magnetic thin films formed on heavy metals, such as 3d magnetic metal thin films on a tungsten substrate. We study the magnetic structures and excitation state in a nanometer scale.
ç ”ç©¶æˆæžœï¼š
M. Haze et al., Sci. Rep. 7, 13269 (2017).
M. Haze et al., Phys. Rev. B 95, 060415(R) (2017).
ãªã©
5. é‡ã„é›»å系超ä¼å°Žä½“ã®STM/STS (STM/STS studies of heavy fermion materials)
BCSç†è«–ã§ã¯èª¬æ˜Žã™ã‚‹ã“ã¨ãŒã§ããªã„ç£æ€§ã¨å…±å˜ã™ã‚‹ç‰¹ç•°ãªè¶…ä¼å°Žä½“ã«å¯¾ã—ã€ãƒ˜ãƒªã‚¦ãƒ 3冷å´ï¼ˆåˆ°é”温度ï¼ï¼Žï¼”K以下)ã®è¶…高真空STï¼ã‚’用ã„ã¦èµ°æŸ»ãƒˆãƒ³ãƒãƒ«åˆ†å…‰ã®ç©ºé–“マッピングを行ã†ã“ã¨ã§ãã®ç‰©æ€§ã‚’明らã‹ã«ã™ã‚‹ç ”究を行ã£ã¦ã„ã¾ã™ã€‚ ã¾ãŸã“ã®ã‚ˆã†ãªéžå¾“æ¥è¶…ä¼å°Žã¨ç£æ€§ã¨ã¨ã®é–¢ã‚Šã‚’スピンå極STMã«ã‚ˆã£ã¦æ˜Žã‚‰ã‹ã«ã™ã‚‹ã“ã¨ã‚‚目指ã—ã¦ã„ã¾ã™ã€‚
Unconventional superconductivity, which cannot be explained by BCS theory, is studied by He3 low temperature (~0.4K) STM/STS. Moreover, the relationship between unconventional superconductivity and magnetism is studied by spin-polarized STM.
ç ”ç©¶æˆæžœï¼š
H. Kim et al., Sci. Adv. 3, eaao0362 (2017)
ãªã©
6. 走査トンãƒãƒ«ãƒ»ãƒãƒ†ãƒ³ã‚·ãƒ§ãƒ¡ãƒˆãƒªãƒ¼ã«ã‚ˆã‚‹è¡¨é¢é›»æ°—ä¼å°Žã®ç ”究 (Surface conductivity studied by scanning tunneling potentiometry)
走査トンãƒãƒ«ãƒãƒ†ãƒ³ã‚·ãƒ§ãƒ¡ãƒˆãƒªãƒ¼ã¨ã¯ã€è¡¨é¢ã®é›»ä½ã®ç©ºé–“分布をéžå¸¸ã«é«˜ç²¾åº¦ã«èª¿ã¹ã‚‹ã“ã¨ãŒã§ãる測定手段ã§ã€è©¦æ–™ã®ä¸¡ç«¯ã«é›»åœ§ã‚’ã‹ã‘ã¦ã€ã‚¼ãƒãƒã‚¤ã‚¢ã‚¹ä»˜è¿‘ã§ãƒˆãƒ³ãƒãƒ«é›»æµãŒã‚¼ãƒã«ãªã‚‹ã‚ˆã†ã«ã€æŽ¢é‡ï¼è©¦æ–™é–“ã®ãƒã‚¤ã‚¢ã‚¹é›»åœ§ã‚’フィードãƒãƒƒã‚¯åˆ¶å¾¡ã™ã‚‹ã“ã¨ã«ã‚ˆã‚Šã€é›»ä½ã‚’決定ã™ã‚‹ã“ã¨ãŒã§ãる。ã„ãšã‚Œã¯ã“ã®æ¸¬å®šæ³•ã¨ã‚¹ãƒ”ンå極STMã¨çµ„ã¿åˆã‚ã›ã¦ã€ã‚¹ãƒ”ンæµã®ç©ºé–“分布を調ã¹ã‚‹ã“ã¨ã‚’目的ã¨ã—ã¦ç ”究を進ã‚ã¦ã„ã¾ã™ã€‚
Scanning tunneling potentiometry is a powerful tool to study surface conductivity in nanoscale. We are interested in surface conductivity of Si(111)-7×7, thin film, and topological materials. We are also interested in detection of spin current by the combination with spin-polarized STM in low temperature.
ç ”ç©¶æˆæžœï¼š
M. Hamada and Y. Hasegawa,Phys. Rev. B 99, 125402 (2019).
M. Hamada and Y. Hasegawa, Jpn. J. Appl. Phys. 51, 125202 (2012)
ãªã©